
Postprint, March 2019

Information Systems Modeling:

Language, Verification, and Tool Support

Artem Polyvyanyy1, Jan Martijn E. M. van der Werf2,

Sietse Overbeek2, and Rick Brouwers2

1 The University of Melbourne, Parkville, VIC, 3010, Australia

artem.polyvyanyy@unimelb.edu.au
2 Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands

{j.m.e.m.vanderwerf,s.j.overbeek}@uu.nl,
r.a.c.m.brouwers@students.uu.nl

Abstract. Information and processes are both important aspects of information

systems. Nevertheless, most existing languages for modeling information systems

focus either on one or the other. Languages that focus on information modeling

often neglect the fact that information is manipulated by processes, while lan-

guages that focus on processes abstract from the structure of the information. In

this paper, we present an approach for modeling and verification of information

systems that combines information models and process models using an auto-

mated theorem prover. In our approach, set theory and first-order logic are used to

express the structure and constraints of information, while Petri nets of a special

kind, called Petri nets with identifiers, are used to capture the dynamic aspects of

the systems. The proposed approach exhibits a unique balance between expres-

siveness and formal foundation, as it allows capturing a wide range of information

systems, including infinite state systems, while allowing for automated verifica-

tion, as it ensures the decidability of the reachability problem. The approach was

implemented in a publicly available modeling and simulation tool and used in

teaching of Information Systems students.

Keywords: IS modeling, verification of IS models, tools for IS modeling.

1 Introduction

An information system is an organized collection of concepts and constraints for storing,

manipulating, and disseminating information. Finding the right balance between con-

cepts and constraints for specifying static and dynamic aspects is essential when design-

ing an information system. However, existing modeling languages often focus on one

of the two aspects, leaving the other to play the second fiddle. Many information mod-

eling notations introduce concepts to capture and verify domain constraints, but neglect

that information is populated through processes. Similarly, process modeling languages

often contain dedicated constructs to represent information/data, e.g., documents and

messages, and data/information flows, but are of limited help when specifying beyond

trivial information constraints imposed by the domain.

This work is motivated by the need, as witnessed by research in the last decade [6,

10, 18, 27], for theoretical and practical languages, methods, and tools to effectively

integrate processes driven and information managed by information systems, as well as

on our experiences in teaching information systems [33]. We propose a language for

conceptual modeling of information systems that fulfills these requirements:

2 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

R1 Can be used to model concepts and constraints that govern the aspects related to

the information that a system can manage, i.e., data, and the semantics of the data,

that the processes of the system can manipulate;

R2 Can be used to model concepts and constraints that govern the aspects related to

the dynamic behavior that a system can exercise, i.e., processes that manipulate the

information managed by the system;

R3 Can be used to specify an aspect of an information system using information and/or

process concepts and constraints;

R4 Has a formal foundation that allows automated verification.

The language we propose, called Information Systems Modeling Language (ISML),

builds upon established formalisms for modeling process- and information-related con-

cepts and constraints. Other criteria for assessing the quality of conceptual modeling

languages, such as clarity, semantic stability, semantic relevance, and abstraction mech-

anisms (cf. [15]), are not considered in this work. These are addressed in isolation by

the languages that constitute our formalism. Studies of manifestations of these criteria

for the proposed overarching language are left for future work.

Requirements R1–R4 are standard for IS modeling languages [6, 10, 18, 27]. We use

mathematical modeling and formal proof methods to develop a formalism that instan-

tiates them in a unique way, as listed below (this claim is justified in Section 2):

I1 The create, read, update, and delete (CRUD) operations over information facts are

supported, along with the expressiveness of the first-order logic over finite sets with

equality for specifying information constraints;

I2 The process constraints of an information system, captured using Petri nets with

identifiers, can induce a finite or countably infinite number of reachable states;

I3 An aspect of an information system can be captured using either process only, infor-

mation only, or a combination of process and information concepts and constraints;

I4 The reachability problem, which given a model of an information system, its initial

state, and some other state of the system consists of deciding if the information

system can evolve from the initial into the given state, is computable.

These instantiations allow capturing a wide range of systems in a flexible way while

ensuring a solid formal foundation. Instantiation I1 ensures standard support for CRUD

operations over information facts and the ability to specify arbitrary constraints over

them. Instantiation I2 ensures that the dynamic behavior of a captured system can be

analyzed based on a wide range of semantics, including the interleaving/noninterleaving

and linear/branching time semantics [29]. Consequently, the support of noninterleaving

semantics necessitates the support for infinite collections of reachable states, as it often

breaks the by-construction-guarantee of a bound on a number of reachable states. In-

stantiation I3 addresses the standard mechanism for balancing information and process

concepts and constraints in models of information systems. We argue that instantia-

tion I4 sets a solid formal foundation. For example, for the well-established formalism

of Petri nets for describing distributed systems, many interesting verification problems

were demonstrated to be recursively equivalent to the reachability problem [12]; these

are the problems of liveness, deadlock-freedom, and several variants of the reachability

problem, e.g., submarking reachability, zero reachability, and single-place zero reacha-

bility. The in this work presented reachability result is yet to be capitalized on in future

studies to extend the repertoire of decidable verification problems for ISML models.

Information Systems Modeling: Language, Verification, and Tool Support 3

The next section discusses related work. Section 3 presents our modeling language.

Section 4 is devoted to the decidability of the reachability problem. Then, Section 5

discusses a proof-of-concept implementation of a tool that supports modeling and sim-

ulation of information systems captured using the proposed language and reports on a

preliminary evaluation of the approach with a cohort of Information Systems students.

The paper closes with conclusions and an outlook at future work.

2 Related Work

To identify existing techniques for modeling information systems, we looked into sur-

vey papers on the topic of integrated data and process modeling. The survey papers, in

turn, were identified by first using Scopus to find papers with titles that contain strings

“data-centric process”, “data-aware process”, “process-centric data”, or “process-aware

data”, and have the subject area of Computer Science (18 papers), then taking only sur-

vey papers (2 papers), and finally including other survey papers that cite any of the

papers related to data and process modeling among the initially identified 18 papers.

This procedure resulted in four identified survey papers, concretely [6, 10, 18, 27]. In

what follows, we discuss those techniques included in the identified surveys that were

assessed to deliver the best balance of expressiveness and verifiability. We classify the

techniques based on their origin in one of the requirements R1 or R2 from Section 1.

The discussions of languages for capturing exclusively process or exclusively informa-

tion concepts and constraints are omitted, because of the space limitations. Hence, for

instance, Entity Relationship diagrams or Object Role Model diagrams, as well as Petri

nets, reset nets, or transfer nets, are not discussed.

Data-aware process models. The core formalism for describing data-aware processes

is arguably colored Petri nets (CPNs). CPNs extend classical Petri nets by equipping

each token with a data value, or color, which can be of an arbitrarily complex type [19].

For CPNs, reachability is undecidable unless the finiteness of the color domain is im-

posed. In [1], CPNs were used for modeling process-aware information systems. This

instantiation of CPNs allows token manipulations to be captured as arbitrary programs,

which benefits expressiveness but hinders analysis, as reachability stays undecidable.

In a Petri net with data, every token carries a data value and executions of transitions

depend on and augment values associated with tokens. If data values are tested only

for equality, like in the case of ν-PNs, the reachability problem is undecidable [28].

However, coverability, termination, and some boundedness problems are decidable for

ν-PNs. The coverability, termination, and boundedness are decidable if in addition to

the equality testing data values are drawn from a totally ordered domain [21]. However,

the reachability problem remains undecidable even under this additional constraint [20].

In [9], the authors propose another model, called RAW-SYS, that combines Petri

nets with relational databases. A RAW-SYS may induce an infinite state transition sys-

tem, which complicates the analysis. In fact, the authors indeed conclude that, unless

one limits the number of objects that can co-exist in a reachable state, the reachability

problem is undecidable. Note that we do not impose this requirement on our models.

In [8], the authors integrate Petri nets, first-order logic, and specifications of how nets

update data populations. Although closely related, this approach is limited to workflows

represented as classical Petri nets only. The authors do not report any results on the

decidability of verification problems for the proposed integrated modeling approach.

4 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

In [24], the authors take inspiration from [9] and propose a three-layered model

of DB-nets. In a DB-net, the persistence layer maintains data values in a relational

database, the control layer uses a variant of colored Petri nets to describe processes, and

the data logic layer provides methods to extract and augment data values. The authors

demonstrate that for a special class of bounded DB-nets that use string and real data

types and may (despite the name) induce infinite collections of reachable states, the

problem of reachability of a nonempty place is decidable.

Process-aware data models. A business artifact describes information about a busi-

ness entity that evolves over time according to a well-defined lifecycle [26]. In [14], the

authors study systems of artifacts that exhibit collective behaviors captured as Kripke

structures and demonstrate that certain CTL properties are decidable for these systems

when values of attributes and variables (scalars) that encode information managed by

the system range over bounded or unbounded (but ordered) domains. Note that a Kripke

structure cannot be used to encode the noninterleaving semantics of a system and can

only be used to describe a finite number of reachable states. In [5], the authors study

the problems of verifying whether an execution of a system can complete, the existence

of an execution that leads to a dead-end, and redundancy of an attribute in a given sys-

tem. These problems are shown to be decidable only under various restrictions, such as

abstracting from actual attribute values or imposing restrictions on information manipu-

lations, e.g., a value of an attribute is allowed to be modified at most once. The behavior

of the overall system is captured as a set of declarative constraints that describe a collec-

tion of allowed executions and interpreted using the interleaving semantics. Differently

from the approaches in [5,14], our formalism does not impose restrictions over domains

or structure of values used to encode information facts.

In [25], the authors propose to use state transition systems to capture life cycles

of data objects. The life cycles of such data objects are then linked according to the

relationships between the objects. Consequently, such an integrated system is capable

of describing only a finite number of states. A similar approach is followed in artifact-

centric modeling [13]. Each artifact has a life cycle, represented by a state machine

that manipulates a data model via OCL. Verification may not always terminate, and, as

shown in [7], verification is only possible in limited cases.

In [11], the authors present some decidability results on verification of a rich artifact

model that surpasses the previous work from IBM on artifact systems at expressiveness.

However, the results are obtained under eight restrictions, which limit the management

of data and recursive computation. The authors demonstrate that lifting any of the eight

restrictions leads to undecidability of the verification. In [4], the authors formalize arti-

fact systems as multi-agent systems and study the decidability of the problem of verify-

ing some temporal logic properties. The authors state the undecidability of the problem

for the general class of systems and derive at the decidability result for the subclass of

systems whose behavior does not depend on the data values in reachable states.

A relational transducer [3,30] based on Gurevich’s Abstract State Machine (ASM) is

a relational database along with an ASM that governs management of the database. The

problems of verifying temporal properties, log equivalence, and finite log validation are

undecidable for transducers [30]. Some decidability results were obtained by a priori

limiting the number of possible relations in each transducer state, limiting the number

of database changes, and restricting the behavior of the transducers [3,30]. Active XML

Information Systems Modeling: Language, Verification, and Tool Support 5

(AXML) is an extension of XML with embedded service calls [2]. Some decidability

results for AXML models for verifying data and process related properties were shown

to be decidable under several restrictions, e.g., by ensuring a static bound on the total

number of function calls in an execution of the system.

In [16], the authors address verification of data-centric dynamic systems (DCDSs).

In a DCDS data is maintained in a relational database, while the process is captured

as a set of condition-action rules that govern updates in the database. A DCDS can

induce infinite collections of reachable states. As shown in [16], verification, in terms

of some temporal logic properties, is undecidable in general and becomes decidable

under constraints over data values in the reachable states.

Summary. None of the existing formalisms for describing process and information

aspects of information systems is capable of describing an infinite amount of states

while imposing no bounds on the values of governed information facts and enjoying

the decidability of the reachability problem. Hence the work at hand to address the gap.

In addition, our formalism supports CRUD operations over information facts and can

be interpreted using interleaving/noninterleaving and linear/branching time semantics.

3 Information Systems Modeling Language

The language we propose has three constituents: an information model to describe the

domain, a Petri net with identifiers to describe dynamic processes, and a specification

defining how the processes manipulate information. In the remainder, we use the fol-

lowing running example to demonstrate the proposed language.1

Running Example. The educational institute “Private Teaching Institute” (PTI) offers

different education tracks, such as Information Sciences and Computer Science. Each

track at PTI has a small team, called the track management team, and a small student

administration for all tracks together. For each track, different courses can be followed.

Every person is entitled to register for a track. Once registered, and accepted by the

track management, a person becomes a student of that track. A student accepted for a

track must create a study plan, consisting of the courses she wants to follow. This plan

has to be approved by the track management. Students enroll for courses. A student of

a track is allowed to follow up to two courses concurrently. A lecturer decides whether

a student fails or passes the course. In case a student fails, she is allowed to retake

the course, until she passes it. Once the student passed all courses approved upon in

the study plan, the student can request a diploma for that track. The track management

verifies the certificates and the plan, after which they award the diploma.

3.1 Information Models

Many languages are available that satisfy the goal of requirement R1 to govern infor-

mation and its manipulations, such as ERDs, UML class diagrams, and ORM diagrams.

Each notation comes with its constructs and ways to express constraints. Yet, all these

notations are similar in that they are founded in set theory and first-order logic. In

ISML, we do not advocate the use of specific notations, but rather focus on the under-

lying principles. An information model consists of a set of possible entity types and

1 Related materials can be found at: http://informationsystem.org/ismsuite/.

6 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

Track (.ID)

Person
(.ID)

enrol s
accepts

Administrator

rejects registers

awarded
exam

registered
exam

Manager

approves
exam of

StudyPlan
(.ID)

is of

a
p
p
ro
v
e
s

v
a
lid
a
te
s

follows

Course
(.ID)

c
o
n
ta
in
s

Lecturer

passes

fails

c1

c2

c3

c4

c5

c6

DateTime

Fig. 1. An information model of the running example in ORM notation.

relations, which are characterized by finite sequences of entity types, together with a

set of conditions, specified in first-order logic on finite sets with equality.

Let I and Λ be a universe of identifiers and a universe of labels, respectively.

Definition 3.1 (Information model)

An information model is a 4-tuple (E,R, ρ, Ψ), where:

◦ E ⊆ P(I) is a finite set of entity types;

◦ R ⊆ Λ is a finite set of relation types;

◦ ρ : R → E∗ is a relation definition function that maps every relation type onto a

finite sequence of entity types for which it holds that for every e ∈ E there exists

r ∈ R, called the entity relation of e, such that ρ(r) = 〈e〉; and

◦ Ψ is a collection of constraints defined as a formal theory of the first-order logic

statements over a collection of predicates that for every r ∈ R contains a predicate

with the domain
∏|ρ(r)|

i=1 ρ(r)(i). y

An information model of our running example in ORM notation is shown in Fig. 1.

Boxes with rounded corners denote entity types, while rectangles stand for relation

types, or facts using the ORM terminology. The diagram allows for traceability between

the visual notation and the formalism. Note that in classical ORM, the running example

would normally be captured using value types and objectified fact types, refer to [15].

Each entity and relation type of an information model is identified by a label and

a corresponding sequence of entity types. For example, entity type Person is char-

acterized by entity relation Person and the sequence of entity types ρ(Person) =
〈Person〉. To indicate that a person can enroll into a track, one can define relation

enrolls such that ρ(enrolls) = 〈Person,Track〉. Fig. 2 gives the relation definition

function of the running example (without the entity relations).

An information model can be instantiated with entities and relations, called facts,

which define its population. Every population is typed, i.e., every relation obeys its

definition given by the relation definition function.

Definition 3.2 (Population, Fact)

A population of an information model (E,R, ρ, Ψ) is a function π : R → P(
⋃

n∈N
In)

such that every element in the population is correctly typed, i.e., for every r ∈ R it

holds that π(r) ∈ P(
∏|ρ(r)|

i=1 ρ(r)(i)).2 An element in π(r) is called a fact. y

2
N denotes the set of all natural numbers, i.e., N = {1, 2, 3, . . .}, set N0

= N ∪ {0}.

Information Systems Modeling: Language, Verification, and Tool Support 7

ρ(registers) = 〈Person, Track〉

ρ(rejects) = 〈Administrator, DateTime, Person, Track〉

ρ(accepts) = 〈Administrator, DateTime, Person, Track〉

ρ(enrolls) = 〈Person, Track〉

ρ(isOf) = 〈StudyPlan, Person, Track〉

ρ(contains) = 〈StudyPlan, Course〉

ρ(approves) = 〈Manager, StudyPlan〉

ρ(follows) = 〈Person, Track, Course〉

ρ(fails) = 〈Person, Track, Course, Lecturer〉

ρ(passes) = 〈Person, Track, Course, Lecturer〉

ρ(registeredExam) = 〈Person, Track〉

ρ(validates) = 〈Manager, StudyPlan〉

ρ(approvesExamOf) = 〈Manager, Person, Track〉

ρ(awardedExam) = 〈Person, Track〉

Fig. 2. Relation definition function for our running example, also visualized in Fig. 1.

Domain constraints are captured as first-order logic statements that define the formal

theory of the information model. Based on the structure, one can distinguish various

classes of constraints. In the context of the running example, we discuss several classes

of constraints. In the remainder, let (E,R, ρ, Ψ) be an information model.

Subtyping Each entity of one type (X∈E) belongs to another type (Y ∈E) iff ∀x∈I :
[x ∈ X ⇒ x ∈ Y]. In Fig. 1, arrows c1, c2, and c3 capture subtype constraints.

Uniqueness A combination of elements in a tuple is unique within a population. In

Fig. 1, c5 specifies that the last three elements of a tuple in accepts are unique:

∀x,y,z,u,v∈I : [((x, z, u, v) ∈ accepts ∧ (y, z, u, v) ∈ accepts) ⇒ x = y].

Mandatory An element or fact must take part in another fact. For example, constraint

c6, denoted by a small filled circle in Fig. 1, specifies that enrolls must appear in

accepts: ∀x,y∈I : [∃u,v∈I : [(x, y) ∈ enrolls ⇒ (u, v, x, y) ∈ accepts]].

Domain-specific constraints that do not fall into predefined categories, like those listed

above, for which typically no corresponding graphical notations exist. For example,

administrators are not allowed to cheat: ∀x,y,z∈I : [(x, y, x, z) 6∈ accepts], i.e., an

administrator cannot accept herself for a track.

A population may invalidate the constraints. Thus, we say that a population π is valid if

it satisfies all the constraints of the information model, denoted by π |= Ψ ; otherwise the

population is invalid. By Π(D) and Λ(D) we denote the set of all possible populations

of information model D and the set of all possible valid populations of D, respectively.

The population of an information system changes frequently. Entities and facts can

be added, deleted, or updated. We define two operations for manipulating populations:

inserting entities into a relation and removing entities from a relation. Note that an

update can be interpreted as a delete followed by an insert.

Definition 3.3 (Transaction)

Let D = (E,R, ρ, Ψ) be an information model. Let r ∈ R be a relation, let v ∈
∏|ρ(r)|

i=1 ρ(r)(i) be a fact, and let π ∈ Π(D) be a population. An operation o is a tuple

o ∈ O(D) with O(D) =
(

R× {⊕,⊖} ×
⋃

n∈N
In

)

.

◦ Operation o = (r,⊕, v) inserts fact v into r in π, i.e., it results in population π′ ∈
Π(D), denoted by (D : π

r⊕v
−→ π′), iff π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) ∪ {v})}.

◦ Operation o = (r,⊖, v) deletes fact v from r in π, i.e., it results in population π′ ∈
Π(D), denoted by (D : π

r⊖v
−→ π′), iff π′ = (π \ {(r, π(r))}) ∪ {(r, π(r) \ {v})}.

A transaction s ∈ (O(D))
∗

is a finite sequence of operations, such that every subse-

quent operation is performed in a population resulting from the previous operation. A

transaction is valid if the starting and resulting populations are valid. y

8 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

Track(IS).

Course(PM).

Course(DM).

Course(PR).

Person(1012).

Administrator(1012).

DateTime(15-03-18 19:01).

Person(520639).

registers(520639, IS).

accepts(1012, 15-03-18 19:01, 520639, IS).

enrolls(520639, IS).

StudyPlan(SP98).

isOf (SP98, 520639, IS).

contains(SP98, PM).

contains(SP98, PR).

Fig. 3. A valid population for the running example.

When the context is clear, i.e., the scope of the information model and its current popu-

lation are known, we write insert(r, v) and delete(r, v) instead of (D : π
r⊕v
−→ π′) and

(D : π
r⊖v
−→ π′), respectively. A valid population of the information model of Fig. 2 is

depicted in Fig. 3. Suppose student 520639 is working on her study plan. Updating the

course Programming (PR) into Data Modeling (DM) can be expressed as follows:

〈delete(contains, (SP98, PR)), insert(contains, (SP98,DM))〉.

As the initial population is valid, and the result of executing the transaction will not

violate any constraint, the above transaction is valid.

3.2 Process Models

Many different approaches for modeling processes exist that satisfy requirement R2.

Each comes with its own notation and applications. For requirement R4 and its instan-

tiation I4, a formal grounding of process modeling is required. Similar to [1], we utilize

Petri nets to model processes. Notice that many languages can be translated into Petri

nets, thus allowing tools to rely on a grounding formalism, while the modeler is us-

ing their own preferred modeling language. The Petri net in Fig. 4 reflects the process

model of the running example.

Many analysis techniques for processes ignore data, i.e., tokens in places resembling

the state of the process are considered to be indistinguishable. However, this results in

an over-approximation of the possible firings, as shown with the following example:

Starting with two tokens in place i, resembling two students, the model can eventually

mark place max concurrent courses with four tokens, refer to Fig. 4; note that places

with tokens encode all the corresponding entity instances currently kept in the popu-

lation of the information model. Now, each student can start following one course by

firing register course. As two tokens remain in place max concurrent courses, transition

register exam remains enabled. However, if considering the students in isolation, this

transition would not have been enabled.

The literature describes several approaches to address requirement R4, refer to Sec-

tion 2. In ν-PN, tokens carry identifiers, while markings map places to bags of identi-

fiers, indicating how many tokens in each place carry the same identifier.

In this paper, we extend the idea of tokens carrying identifiers to vectors of identifiers,

to obtain Petri nets with identifiers (PNIDs). Vectors of identifiers have the advantage

that a single token can represent multiple entities at the same time. In this way, a token

may resemble a (composed) fact from a population of an information model.

In a PNID, each arc is labeled with a vector of variables. Similar to ν-PN, a valuation

instantiates the variables to identifiers. The size of the vector on the arc is implied by the

cardinality of the place it is connected to. Tokens carrying vectors of size 0 represent

classical – black – tokens. If for a transition some variable only appears on outgoing

arcs, it is called a creator variable. Let Σ denote a universe of variables.

Definition 3.4 (Petri net with identifiers)

A Petri net with identifiers (PNID) is a 5-tuple (P, T, F, α, β), where:

Information Systems Modeling: Language, Verification, and Tool Support 9

register

reject

student

accept

student

create
studyplan

reject plan

accept plan

register course

unregister

pass

course

fail course

register

exam

reject exam

accept

exam

award exam

add course

remove

course

alter plan

education
track

administrator

max

concurrent

courses

course

manager

(s,t)
t

(s,t)

a

(s,t)

(s,t)

(s,t) (s,t,p)

(s,t,p)

a

(s,t,p) (s,t,p)

(s,t,c)

2'(s,t)

c

(s,t,c)

(s,t,c)

l

l

(s,t)

(s,t)(s,t,p)

(s,t,p)

(s,t,p)

(s,t,p)

(s,t)

(s,t)

m
m

(s,t,p)

(s,t,p)(s,t,p)

(s,t,p)
(s,t,p)

(s,t,p)

c

c

(s,t,p)(s,t,p)

(s,t,p)

m

m

m

m

m
m

l

l
c

c

c

i

a

a

archive

(s,t)

(s,t)

(s,t)

start

f

lecturer

t

s

s

a

c
d

e

b

Fig. 4. PNID that describes processes students follow at PTI.

◦ (P, T, F) is a Petri net, with a set of places P , a set of transitions T , such that

P ∩ T = ∅, and a flow function F : ((P × T) ∪ (T × P)) → N
0; if for n,m ∈

P ∪ T , F (n,m) > 0, an arc is drawn from n to m;

◦ α : P → N
0 defines the cardinality of a place, i.e., the length of the vector carried

on the tokens residing at that place; its color is defined by C(p) = Iα(p);

◦ β defines the variable vector for each arc, i.e., β ∈
∏

f∈F Vf , where V(p,t) =

V(t,p) = Σα(p) for p ∈ P, t ∈ T . y

A marking of a PNID defines for each place the amount of tokens per vector identifier.

Definition 3.5 (Marking)

Given a PNID N = (P, T, F, α, β), its set of all possible markings is defined as

M(N) =
∏

p∈P C(p) → N
0. For m ∈ M(N), pair (N,m) is a marked PNID. y

A transition is enabled if a valuation of variables to identifiers exists, such that each

input place contains sufficient tokens with vectors of identifiers induced by the instanti-

ated variable vector of the corresponding arc. The same valuation is used to determine

which vectors of identifiers are produced in the output places. Note that a transition can

only create new identifiers through variables that do not occur on its input arcs.

Definition 3.6 (Transition firing in a PNID)

Let (N,m) be a marked PNID with N = (P, T, F, α, β). Let valuation ν : Σ → I
be an injective function that maps each variable to an identifier. A transition t ∈ T is

enabled in (N,m) if [ν(β((p, t)))F (p,t)] ≤ m(p) for all places p ∈ P . Its firing, denoted

by (N : m
(t,ν)
−→ m′), results in a marking m′ with m′(p)+[ν(β((p, t)))F (p,t)] = m(p)+

[ν(β((t, p)))F (t,p)], for all places p ∈ P . y

Details on the semantics of PNIDs are in [34]. Consider again the net in Fig. 4. This net

is a PNID. Transition start creates a token with a single identifier, representing a person

10 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

insert(Person , (s))

insert(registers , (s, t))

insert(Person , (520639))

insert(registers , (520639, IS))

Fig. 5. Abstract transaction for transition register, and its instantiation with valuation {s 7→
520639, t 7→ IS}.

entering PTI. Place education track contains all the tracks PTI offers. Firing transition

register, models that some person s chooses a track t and registers for that track. The

result is a token with a vector containing two identifiers: one for the person and one

for the track. A token in place d resembles a student with an accepted plan. Similarly,

place e represents students following a course, and carries three identifiers: the student

(person and track), and the course.

3.3 Information Systems Modeling Language

A transition firing can resemble some fact manipulation in the information model. Its

firing requires a valuation that determines which identities can be used. For example,

transition register resembles adding a fact to the population: insert(register , (p, t)), for

some person p and track t. The intent of requirement R2 is to make this relation explicit.

In our proposed formalism, each transition is specified with an abstract transaction

that describes how the transition manipulates the population of the information model.

Similar to transition firings in PNID, valuations are used to compute the transaction

by instantiating the abstract transaction. For example, transition accept student from

Fig. 4 can have the abstract transaction depicted in Fig. 5, that inserts two facts into a

population: one to add the student as a person, and one to relate the person to the track.

Definition 3.7 (Abstract transaction)

Let D = (E,R, ρ, Ψ) be a data model. An abstract transaction is a sequence of abstract

operations o ∈
(

R× {⊕,⊖} ×
⋃

n∈N
(Σ ∪ I)n

)∗
, using variables from Σ and identi-

fiers I. An abstract transaction o is instantiated using a valuation ν : Σ → I, denoted

by ν(o), which results in a transaction by replacing all variables by their valuation. The

set of all abstract transactions for data model D is denoted by T (D). y

Starting with a valid population, a transaction should not invalidate the population.

Hence, we only allow transitions to fire if both the transition is enabled and its corre-

sponding transaction is valid in the current population. This forms the basis of an ISM,

whereas ISML consists of three languages for specifying information models, PNIDs,

and specifications which define abstract transactions of the transitions of PNIDs.

Definition 3.8 (Information System Model, Semantics)

An Information System Model (ISM) is a tuple IS = (D,N, S), where D = (E,R, ρ, Ψ)
is an information model, N = (P, T, F, α, β) is a PNID, and S : T → T (D) is

a specification. A state of an information system is a pair (π,m), with population

π ∈ Λ(D) and marking m ∈ M(N). Given markings m,m′ ∈ M(N) and valid

populations π, π′ ∈ Λ(D), transition t ∈ T with valuation ν is enabled in (π,m) iff

(D : π
ν(S(t))
−→ π′) and (N : m

(t,ν)
−→ m′). Its firing results in the new state (π′,m′), and

is denoted by (IS : (π,m)
(t,ν)
−→ (π′,m′)). A state (πn,mn) is said to be reachable from

(π0,m0) if intermediate states (πi,mi) and transitions ti with valuations νi exist such

that (IS : (πi,mi)
(ti,νi)
−→ (πi+1,mi+1)) for all 0 ≤ i < n. y

Information Systems Modeling: Language, Verification, and Tool Support 11

a

b

(q)(p)

(p) (p)

(a) Model N1

a

ab

(p)

(q) (p)

(q)

(p)

(p)

(b) Model N2

a b

a

b

(p) (q) (p)(p)

(p) (q)

(p) (p)

(c) Model N3

Fig. 6. Three process models of ISMs that capture the same behavior (subject to the information

model); ISMs that rely on models N1 and N3 are information- and process-driven, respectively.

A spectrum of information system models. Domain constraints can be expressed in

the information model or in the process model, or in both. As an example, consider

the models in Fig. 6. Suppose we have information model D with relation types de-

fined by ρ(P) = 〈P〉 and ρ(Q) = 〈P,P〉. Let the information model be constrained

by ∀x,y∈I : [(x, y) ∈ Q =⇒ ((x) ∈ P ∧ (y) ∈ P)]. Let the specification map all the

transitions in Fig. 6 labeled a to the transaction 〈delete(P, (p)), insert(P, (q))〉, and all

the transitions labeled b to the transaction 〈insert(Q, (p, p))〉. The three process mod-

els result in the following ISMs: IS 1 = (D,N1, S), IS 2 = (D,N2, S), and IS 3 =
(D,N3, S). Suppose, we start from the empty population. In all three ISMs, transition

b is only enabled after a transition with label a has fired at least once; it requires a fact

(x) ∈ P , which initially does not hold. Similarly, suppose we have a population with

fact (x) ∈ P . Firing a transition with label b results in the population with facts (x) ∈ P

and (x, x) ∈ Q. Removing fact (x) ∈ P is not allowed anymore, as this will violate the

constraint. Hence, transition a is never enabled once transition b fired. Consequently,

given the initial empty population, all three ISMs model exactly the same behavior.

The above example shows that different ISMs can describe exactly the same behav-

ior. Model N1 does not impose any order on the process. Hence, always if a trans-

action in N1 is valid, the corresponding transition is enabled. We call this behavior

information-driven. On the other hand, in model N3 it becomes directly apparent that

there is a constraint on the order of firing transitions a and b: always if the transition is

enabled in the net, the corresponding transaction is valid. We say such transitions are

process-driven. Model N2 is a combination of the two: the top transition a and transi-

tion b are both process- and information-driven, whereas the other transition a is only

information-driven. These examples show the existence of a spectrum of ISMs:

Definition 3.9 (Information- and process-driven ISMs)

Let IS = (D,N, S) be an ISM with N = (P, T, F, α, β). Transition t ∈ T is called:

◦ information-driven if (D : π
ν(S(t))
−→ π′) implies (IS : (π,m)

(t,ν)
−→ (π′,m′)),

◦ process-driven if (N : m
(t,ν)
−→ m′) implies (IS : (π,m)

(t,ν)
−→ (π′,m′)),

for any two markings m,m′ ∈ M(N), valuation ν, and populations π, π′ ∈ Λ(D). If

all transitions in the PNID are information-driven (process-driven), the ISM is called

information-driven (process-driven). y

Most transitions are neither information- nor process-driven. Instead, for each transi-

tion, the modeler balances between information and process. As an example, consider

transition register exam from Fig. 4. Suppose PTI prescribes that registering for an

12 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

exam is only allowed if all courses the student listed in the study plan are passed. In the

current model, if the student has its study plan accepted, but did not yet follow a sin-

gle course, transition register exam is enabled. Although the above constraint could be

modeled in the process model, it adds unnecessary complexity, whereas the constraint

is relatively simple to be expressed in first-order logic (see Fig. 7). Therefore it can be

added to the information model, rather than to encode it in the process model.

Being aware of how constraints manifest in the different models and their conse-

quences is essential when designing information systems. This is the main idea behind

requirement R3 and our instantiation of this requirement with ISMs, i.e., that designers

of information systems are aware of which constraints are imposed and how they in-

terplay within the system, as these are a possible cause of mistakes, as experienced by

many students [33]. ISML allows modelers to decide how to specify constraints, and to

verify the consequences of that decision.

4 Automated Verification

Automated verification assists designers in checking whether their system satisfies ex-

pected properties. An important class of properties are reachability related [12]: Given

some current state of an IS, it should always be possible to reach some other state of

the system. For example, a student that starts studying a track, should always be able to

finish the track. This results in the following definition of the reachability problem:

Definition 4.1 (Reachability problem)

Given an initial state (π0,m0) of an ISM (D,N, S), the reachability problem consists

in deciding whether a state (π,m) is reachable from (π0,m0). y

Combining information and process models is almost a guarantee to violate requirement

R4 [6]. In general, the reachability problem is undecidable for Petri nets with identifiers,

as there is no structure on the countably infinite set of identifiers; this observation is

similar to the one for ν-PNs [21, 28]. In ISMs, identifiers represent elements in the

information model. Under the assumption that no information model becomes infinite,

which is a reasonable assumption [6], there is a bound on the number of elements the

identifiers represent. Further assuming that each identifier is generated consecutively,

provides an ordering on the identifiers. These two assumptions form the basis of the

class of counter-valuated PNIDs [17]. In this class, identifiers are mapped on the natural

numbers, and an implicit counter place is used to generate the next, fresh, identifier for

every fresh element in the information model. As the last generated identifier for a given

net is always known, the net can be translated into a classical Petri net [34], for which

the reachability problem is decidable [12].

Based on the same assumptions, one can conclude that the set of populations for an

information model induced from a finite set of elements is finite. In addition, the set of

transactions possible on these populations is finite. Consequently, the process of mov-

ing between populations can be represented by a deterministic finite automaton. Hence,

given an upper bound k on the identifiers, the semantics of the information system

model becomes the synchronous product of a classical Petri net, the one constructed

from the corresponding counter-valuated PNID, and a deterministic finite automaton,

the one obtained from the information model, for which reachability is again decid-

able [23]. All these observations lead to the main reachability result for ISMs.

Information Systems Modeling: Language, Verification, and Tool Support 13

tff(register_for_exam}, conjecture,

! [p: Person, t: Track]:

(registeredExam(p,t) =>

? [s: StudyPlan]: (isOf(s,p,t)

& ! [c: Course]: (contains(s,c) =>

? [l: Lecturer] :

passes(p,t,c,l)))

)).

Fig. 7. Constraint in TPTP-format.

process Student {

...

transition register(p: Person,

t: Track) {

register p;

insert (p) into Person;

insert (p,t) into registers;

} ... }

Fig. 8. Excerpt of the specification.

Theorem 4.2 (Decidability of the reachability problem)

Given an ISM (D,N, S), where N is a counter-valuated PNID, it is decidable whether

some state (π,m) is reachable from the initial state (π0,m0) of the ISM. y

Proof. (sketch) Let N̄ be the classical Petri net derived from the k-bounded net N ,

where k ∈ N
0 is the last generated identifier in N , cf. [34]. Let Q be the automaton

induced by the up-to-k-bounded populations of D. Then Q is finite and deterministic.

As each transition in N̄ maps to a transaction in Q via specification S, one can construct

the synchronous product of N̄ and Q that describes the semantics of the ISM. Hence,

the reachability of the k-bounded ISM translates to the reachability of the synchronous

product, which is decidable [23]. �

Based on the result in [22], we conclude that the proposed decision procedure requires

at least 2 c×(2k
u×v

+ p×kw) space for some constant c > 0, where k, as in the above

proof sketch, is the identifier in the counter place of N , u is the number of relations in

D, v is the length of the shortest relation in D, w is the minimal sum of all incoming

and outgoing arcs of some place of N , and p is the number of places in N . Details on

obtaining this result and for the rigorous proof of Theorem 4.2 can be found in [34].

5 Tool Support and Initial Evaluation

To show the applicability of ISML, we have implemented our approach in a prototype

called ISM Suite.3 In this prototype, we build upon CPN tools [35] for simulating the

PNID, and an own implementation of a theorem prover on finite sets. Constraints of the

information model are specified in TPTP syntax [32]; an example constraint is shown in

Fig. 7. The specification uses a special format to define transactions of transitions. An

excerpt of the specification of the running example is in Fig. 8. The specification lan-

guage has three constructs that can be used to define transactions: register, to register an

element in the population, and insert and remove to add and remove facts, respectively.

If an unregistered element is used in a fact, the resulting population is invalid.

All enabled transitions that result in valid populations are listed in the user interface,

from which the user can select a transition to fire. For each transition that yields an

invalid population, the violated constraints can be requested, to support the designer in

better understanding the reasons of the violation.

In [33], we reported on an initial evaluation of the modeling component of ISM

Suite with a cohort of Information Systems students in a real teaching and learning

3 The source code is available from https://github.com/information-systems/ismsuite.

14 A. Polyvyanyy, J. M. E. M. van der Werf, S. Overbeek, and R. Brouwers

environment; the students used our tool to solve an information system modeling task.

The initial results are promising, as evidenced by the collected qualitative comments

from the students, refer to [33]. This and subsequent collected feedback will be used to

inform evolution of our tool.

6 Conclusions and Future Work

The paper at hand proposes an approach for modeling an information system as an

integration of an information model and a process model via a specification on how

processes manipulate information. The proposal constitutes a unique instantiation of

standard requirements for capturing concepts and constraints of an information system.

Using the proposed formalism, one can express an infinite state system that supports

CRUD operations over arbitrary finite populations of information facts governed by

the constraints expressed in first-order logic with equality. At the same time, the pro-

posed formalism enjoys the decidability of the reachability problem, which sets a solid

foundation for verification of formal properties of the described systems.

Future work will strengthen the results reported in this paper to allow the adoption

of the language by practitioners. The concrete next steps include studies of other veri-

fication problems and data flow anomalies [31], studies of the interplay between infor-

mation and process concepts and constraints, improvement of the tool support, devel-

opment of methodologies for designing information systems using our formalism, and

empirical studies aimed at improving the usability of the approach. Finally, the high

lower bound on the space requirement reported at the end of Section 4 justifies that one

can use ISML to capture a wide range of systems. It is interesting to study how often do

the extremely complex cases manifest in the problems encountered in the real world.

Acknowledgment. Artem Polyvyanyy was partly supported by the Australian Research

Council Discovery Project DP180102839.

References

1. W. M. P. van der Aalst and C. Stahl. Modeling Business Processes—A Petri Net-Oriented

Approach. Cooperative Information Systems series. MIT Press, 2011.

2. S. Abiteboul, L. Segoufin, and V. Vianu. Modeling and verifying active XML artifacts. IEEE

Data Eng. Bull., 32(3):10–15, 2009.

3. S. Abiteboul, V. Vianu, B. S. Fordham, and Y. Yesha. Relational transducers for electronic

commerce. J. Comput. Syst. Sci., 61(2):236–269, 2000.

4. F. Belardinelli, A. Lomuscio, and F. Patrizi. Verification of agent-based artifact systems.

Journal of Artificial Intelligence Research, 51:333–376, 2014.

5. K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su. Towards formal analysis of

artifact-centric business process models. In BPM, volume 4714 of LNCS. Springer, 2007.

6. D. Calvanese, G. De Giacomo, and M. Montali. Foundations of data-aware process analysis:

a database theory perspective. In PODS, pages 1–12. ACM, 2013.

7. D. Calvanese, M. Montali, M. Estañol, and E. Teniente. Verifiable UML artifact-centric

business process models. In CIKM. ACM Press, 2014.

8. G. De Giacomo, X. Oriol, M. Estañol, and E. Teniente. Linking data and BPMN processes

to achieve executable models. In CAiSE, volume 10253 of LNCS. Springer, 2017.

9. R. De Masellis, C. Di Francescomarino, C. Ghidini, M. Montali, and S. Tessaris. Add data

into business process verification: Bridging the gap between theory and practice. In AAAI,

pages 1091–1099. AAAI Press, 2017.

Information Systems Modeling: Language, Verification, and Tool Support 15

10. A. Deutsch, R. Hull, Y. Li, and V. Vianu. Automatic verification of database-centric systems.

SIGLOG News, 5(2):37–56, 2018.

11. A. Deutsch, Y. Li, and V. Vianu. Verification of hierarchical artifact systems. In PODS,

pages 179–194. ACM Press, 2016.

12. J.Esparza and M.Nielsen. Decidability issues for Petri nets–a survey. EATCS Bull., 52, 1994.

13. M. Estañol, M.-R. Sancho, and E. Teniente. Verification and validation of UML artifact-

centric business process models. In CAiSE, volume 9097 of LNCS. Springer, 2015.

14. C. E. Gerede and Jianwen Su. Specification and verification of artifact behaviors in business

process models. In ICSOC, volume 4749 of LNCS, pages 181–192. Springer, 2007.

15. T. A. Halpin and Anthony C. Bloesch. Data modeling in UML and ORM: A comparison. J.

Database Manag., 10(4):4–13, 1999.

16. B. Hariri, D. Calvanese, G. De Giacomo, A. Deutsch, and M. Montali. Verification of rela-

tional data-centric dynamic systems with external services. In PODS. ACM Press, 2013.

17. K.M. van Hee, N. Sidorova, M. Voorhoeve, and J.M.E.M. van der Werf. Generation of

Database Transactions with Petri nets. Fundamenta Informatica, 93(1–3):171 – 184, 2009.

18. R. Hull, J. Su, and R. Vaculı́n. Data management perspectives on business process manage-

ment: tutorial overview. In SIGMOD, pages 943–948. ACM, 2013.

19. K. Jensen. Coloured Petri Nets—Basic Concepts, Analysis Methods and Practical Use Vol-

ume 1. Monographs in Theoretical Computer Science. An EATCS Series. Springer, 1996.

20. S. Lasota. Decidability border for Petri nets with data: WQO dichotomy conjecture. In Petri

Nets, volume 9698 of LNCS, pages 20–36. Springer, 2016.

21. R. Lazic, T. C. Newcomb, J. Ouaknine, A. W. Roscoe, and J. Worrell. Nets with tokens

which carry data. Fundam. Inform., 88(3):251–274, 2008.

22. R.J. Lipton. The reachability problem requires exponential space. Research report (Depart-

ment of Computer Science). Yale University, 1976.

23. E.W. Mayr. Persistence of vector replacement systems is decidable. Acta Inf., 15(3), 1981.

24. M. Montali and A. Rivkin. DB-Nets: On the marriage of colored Petri nets and relational

databases. In Petri Nets, volume 10470 of LNCS, pages 91–118. Springer, 2017.

25. D. Müller, M. Reichert, and J. Herbst. Data-driven modeling and coordination of large pro-

cess structures. In CoopIS, volume 4803 of LNCS. Springer, 2007.

26. A. Nigam and N. S. Caswell. Business artifacts: An approach to operational specification.

IBM Systems Journal, 42(3):428–445, 2003.

27. H.A. Reijers, I.T.P. Vanderfeesten, M.G.A. Plomp, P. Van Gorp, D. Fahland, W.L.M. Van der

Crommert, and H.D.D. Garcia. Evaluating data-centric process approaches: Does the human

factor factor in? SoSyM, 16(3), 2017.

28. F. Rosa-Velardo and D. de Frutos-Escrig. Decidability and complexity of Petri nets with

unordered data. Theoretical Computer Science, 412:4439–4451, 2011.

29. V. Sassone, M. Nielsen, and G. Winskel. Models for concurrency: Towards a classification.

Theoretical Computer Science, 170(1-2):297–348, dec 1996.

30. M. Spielmann. Verification of relational transducers for electronic commerce. J. Comput.

Syst. Sci., 66(1):40–65, 2003.

31. S.X. Sun, J.L. Zhao, J.F. Nunamaker Jr., and O.R.L. Sheng. Formulating the data-flow per-

spective for business process management. Inf. Syst. Res., 17(4), 2006.

32. G. Sutcliffe, S. Schulz, K. Claessen, and A. van Gelder. Using the TPTP language for writing

derivations and finite interpretations. In Aut. Reason., volume 4130 of LNCS. Springer, 2013.

33. J.M.E.M. van der Werf and A. Polyvyanyy. An assignment on information system modeling.

In BPM Ed. Symp., volume 342 of LNBIP. Springer, 2018.
34. J.M.E.M.vanderWerf andA.Polyvyanyy.Onthedecidabilityofreachabilityproblemsfor mo-

dels of information systems. Technical Report UU-CS-2018-005, Utrecht University, 2018.

35. M. Westergaard and L.M. Kristensen. The access/CPN framework: A tool for interacting

with the CPN-tools simulator. In Petri Nets, volume 5606 of LNCS. Springer, 2009.

